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Loading data for the following steps

Read the Data on Muensingen Fibulae

muensingen_fib.csv

muensingen <- read.csv2("muensingen_fib.csv")
head(muensingen)

##    X Grave Mno FL BH BFA FA CD BRA ED FEL  C   BW  BT FEW Coils Length
## 1  1   121 348 28 17   1 10 10   2  8   6 20  2.5 2.6 2.2     4     53
## 2  2   130 545 29 15   3  8  6   3  6  10 17 11.7 3.9 6.4     6     47
## 3  3   130 549 22 15   3  8  7   3 13   1 17  5.0 4.6 2.5    10     47
## 4  8   157  85 23 13   3  8  6   2 10   7 15  5.2 2.7 5.4    12     41
## 5 11   181 212 94 15   7 10 12   5 11  31 50  4.3 4.3  NA     6    128
## 6 12   193 611 68 18   7  9  9   7  3  50 18  9.3 6.5  NA     4    110
##   fibula_scheme
## 1             B
## 2             B
## 3             B
## 4             B
## 5             C
## 6             C
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https://raw.githubusercontent.com/BernCoDALab/smada/refs/heads/main/lectures/08/muensingen_fib.csv


For 2 variables

Used to display a variable in relation to another
one.

plot(muensingen$Length, muensingen$FL)
abline(
  lm(muensingen$FL~muensingen$Length),
  col="red")

Visible: If one variable increases in size, the
other variable increases as well.

Other visible properties:

Direction of the relationship (greater->
greater vs. greater -> smaller)
Linearity of the relation (monotonous, not
monotonous)
Strength of the relationship (points near
vs. far from an imaginary line)

Scatterplot
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Direction and linearity of relationships

direction

Indicates whether a variable increases (positive) or decreases (negative) with the other variable.

Variables: possible cause (independent variable) and effect of interest (dependent variable)

linearity

There are linear and non-linear regressions.

Non-linear regressions, possible causes:

Combination of different (linear?) influences: multiple regression analysis

Influence factor has no linear effect: nonlinear model (square or higher polynomial, threshold
systems etc.)
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Regression: Equation
What we still know from school lessons... The formula for a linear equation consists of a slope (b)
and an intercept (displacement constant a)

Example: {1,3}, {2,5}, {3,7} ...

But: this only works with perfect correlation, what with deviating (statistical) values?

y = a + bx

b = (y2−y1)
(x2−x1)

a = y1 − b ∗ x1

b = = 2(5−3)
(2−1)

a = 3 − 2 ∗ 1 = 1

y = 1 + 2 ∗ x

6 / 34



https://commons.wikimedia.org/wiki/File:Linear_least_squares_example2.svg

Regression: least-squares method (Methode der
kleinsten Quadrate) [1]
Estimation of the optimal approximation with the least-square method

For values that do not correspond exactly to a straight line, an optimal approximation must be found.

The absolute distance between the real y-value and the estimated y-value should be as small as
possible, it applies:

min ∑n
i=1(yi − ŷ)2
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slope

upper part of the formula:
 covariance

This value increases when x and y vary in the
same direction.

lower part of the formula: 
variance of X

normalizes the common variance to the
variance of x

Result: How does y vary in relation to x on
average?

intercept

given the slope, what is the displacement
(intercept with the y-axis) in respect to the
means of both variables

Regression: least-squares Methode (Methode der
kleinsten Quadrate) [2]

min ∑n
i=1(yi − ŷ)2 = bmin = ∑n

i=1(xi−x̄)∗(yi−ȳ)
∑n

i=1(xi−x̄)2

∑n
i=1(xi − x̄) ∗ (yi − ȳ)

∑n
i=1(xi − x̄)2

amin = ȳ − bmin ∗ x̄
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head(muensingen[,c("FL", "Length")])

##   FL Length
## 1 28     53
## 2 29     47
## 3 22     47
## 4 23     41
## 5 94    128
## 6 68    110

colMeans(head(muensingen[,c("FL", "Length")]))

##     FL Length 
##     44     71

FL Length FL -
mean(FL)

Length -
mean(Length) covariance var(L)

28 53 -16 -18 288 324

29 47 -15 -24 360 576

22 47 -22 -24 528 576

23 41 -21 -30 630 900

94 128 50 57 2850 3249

68 110 24 39 936 1521

sum 5592 7146

Regression: least-squares Methode (Methode der
kleinsten Quadrate) [3]

Example

bmin =
∑n

i=1
(xi−x̄)∗(yi−ȳ)

∑n
i=1

(xi−x̄)2

bmin = 5592
7146

bmin = 0.7825357

amin = ȳ − bmin ∗ x̄

amin = 44 − 0.7825357 ∗ 71

amin = −11.5600336
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FL Length FL -
mean(FL)

Length -
mean(Length) covariance var(L)

28 53 -16 -18 288 324

29 47 -15 -24 360 576

22 47 -22 -24 528 576

23 41 -21 -30 630 900

94 128 50 57 2850 3249

68 110 24 39 936 1521

sum 5592 7146

Regression: least-squares Methode (Methode der
kleinsten Quadrate) [4]

bmin =
∑n

i=1
(xi−x̄)∗(yi−ȳ)

∑n
i=1

(xi−x̄)2

bmin = 5592
7146

bmin = 0.7825357

amin = ȳ − bmin ∗ x̄

amin = 44 − 0.7825357 ∗ 71

amin = −11.5600336
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FL Length FL -
mean(FL)

Length -
mean(Length) covariance var(L)

28 53 -16 -18 288 324

29 47 -15 -24 360 576

22 47 -22 -24 528 576

23 41 -21 -30 630 900

94 128 50 57 2850 3249

68 110 24 39 936 1521

sum 5592 7146

mm <- data.frame(head(muensingen))
b.min <- sum(
  (mm$FL - mean(mm$FL)) * (mm$Length - mean(mm$Length))
  ) / 
  sum((mm$Length - mean(mm$Length))^2)
b.min

## [1] 0.7825357

a.min <- mean(mm$FL) - b.min * mean(mm$Length)
a.min

## [1] -11.56003

Or shorter:

lm(FL ~ Length, data=mm)

## 
## Call:
## lm(formula = FL ~ Length, data = mm)
## 
## Coefficients:
## (Intercept)       Length  
##    -11.5600       0.7825

Regression: least-squares Methode (Methode der
kleinsten Quadrate) [5]

bmin =
∑n

i=1
(xi−x̄)∗(yi−ȳ)

∑n
i=1

(xi−x̄)

bmin = 5592
7146

bmin = 0.7825357

amin = ȳ − bmin ∗ x̄

amin = 44 − 0.7825357 ∗ 71

amin = −11.5600336
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Regression: least-squares method exercise
Regression between number of millstones and number of cereal grains (Shennan example)

The number of cereal grains and millstones is given in different Neolithic settlements. Plot the
relationship and specify the described regression equation.

cereal_processing.csv
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https://raw.githubusercontent.com/BernCoDALab/smada/refs/heads/main/lectures/08/cereal_processing.csv


Regression is only an optimal approximation,
the quality of which depends on it. depends on
how well the independent variable determines
the dependent one.

In reality, the data usually deviate from the
ideal line.

So how strong is the correlation?

Correlation coefficient:

Measure of how much the data is distributed
around the regression line,

measure of how strongly the variables
covariate in relation to their own variability

data<-read.csv2("cereal_processing.csv",row.names=1)
plot(data$groundstones,data$cereals)
abline(lm(data$cereals ~ data$groundstones))

Correlation: Correlation coefficient [1]

How well does my regression equation fit the data?
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Measure of how much the data is distributed
around the regression line,

measure of how strongly the variables
covariate in relation to their own variability

upper part of the formula:
 covariance

lower part of the formula:

standardizes the covariance to both variances

data<-read.csv2("cereal_processing.csv",row.names=1)
plot(data$groundstones,data$cereals)
abline(lm(data$cereals ~ data$groundstones))

Correlation: Correlation coefficient [2]

Correlation coefficient:

r =
∑n

i=1(xi−x̄)∗(yi−ȳ)

√∑n

i=1(xi−x̄)2∗∑n

i=1(yi−ȳ)2

∑n
i=1(xi − x̄) ∗ (yi − ȳ)

√∑n
i=1(xi − x̄)2 ∗ ∑n

i=1(yi − ȳ)2

14 / 34



if the common variance is greater than the
independent variances increases r

if the common variance is smaller than the
independent variances r decreases

if all values lie on one line |r| = 1

if x increases and y increases the value
becomes positive

if x increases and y decreases the value
becomes negative

data<-read.csv2("cereal_processing.csv",row.names=1)
plot(data$groundstones,data$cereals)
abline(lm(data$cereals ~ data$groundstones))

Correlation: Correlation coefficient [3]

Correlation coefficient:

r =
∑n

i=1(xi−x̄)∗(yi−ȳ)

√∑n

i=1(xi−x̄)2∗∑n

i=1(yi−ȳ)2
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Correlation: Correlation coefficient [4]
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Measure of how much the data is distributed
around the regression line,

measure of how strongly the variables
covariate in relation to their own variability

upper part of the formula:
 covariance

lower part of the formula:

standardizes the covariance to both variances

cov(muensingen$FL, muensingen$Length) /
  sqrt(var(muensingen$FL) * var(muensingen$Length))

## [1] 0.9124495

covariance (cov) / square root (sqrt) of
Variance Footlength * variance Length

or simpler:

cor(muensingen$FL, muensingen$Length)

## [1] 0.9124495

Correlation: Correlation coefficient [4]

in R:

r =
∑n

i=1(xi−x̄)∗(yi−ȳ)

√∑n

i=1(xi−x̄)2∗∑n

i=1(yi−ȳ)2

∑n
i=1(xi − x̄) ∗ (yi − ȳ)

√∑n
i=1(xi − x̄)2 ∗ ∑n

i=1(yi − ȳ)2
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Correlation: coefficient of determination [1]
Specifies how much of the variation of the dependent variable is explained by the variation of the
independent variable.

Example: to what percentage is the foot length explained by the fibula length?

Determination coefficient r²= r ^2 ;-)

Our example: r = 0.9124495, r² = 0.832564

83.2564018% of the variation in foot length is explained by the length of the fibula!

Attention: "explained" does not necessarily mean causal connection!
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shapiro.test(muensingen$FL)

## 
##     Shapiro-Wilk normality test
## 
## data:  muensingen$FL
## W = 0.63595, p-value = 2.37e-05

shapiro.test(muensingen$Length)

## 
##     Shapiro-Wilk normality test
## 
## data:  muensingen$Length
## W = 0.80529, p-value = 0.0024

# OK, in our example it is not the case.
# If it would be, we could do:

cor.test(muensingen$FL,muensingen$Length)

## 
##     Pearson's product-moment correlation
## 
## data:  muensingen$FL and muensingen$Length
## t = 8.6363, df = 15, p-value = 3.314e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7691077 0.9683922
## sample estimates:
##       cor 
## 0.9124495

Correlation test
It correlates, but does it also correlate significantly?

Test against a normally distributed error distribution with Pearson's correlation coefficient (the
"normal" correlation coefficient)

The variables should be distributed normally (check with ks.test or shapiro.test)
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Correlation: least-squares method exercise
Correlation between number of millstones and number of cereal grains (Shennan example)

The number of cereal grains and millstones is given in different Neolithic settlements. Indicate how
strongly the variables correlate with each other, how much of the variation of the millstones is
explained by the cereal grains and whether the correlation is significant!

File: cereal_processing.csv
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Correlation of ordinally scaled variables
If, as is often the case, we have no measurement data, or they are not normal distributed.

Measures for the correlation of ordinally scaled data (rank correlation):

Kendall's  (tau)

Spearmans  (rho)

Example according to Shennan: Size of settlement and quality of soil

poor medium good Sum

small 15 7 2 24

medium 6 11 4 21

big 7 7 8 22

Sum 28 25 14 67

τ

ρ
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Kendall's  (tau) [1]
Calculation over the ranks

Prerequisites: Two at least ordinally scaled variables of a random sample

Idea: With a perfect correlation, all large settlements are located on the good soils, all medium ones
on the medium and all small ones on the bad.

The calculation is based on possible pairings of values whose ranks are compared to each other.

If both x and y values are smaller for a pairing than is the case at the comparison pair, the result is a
concurrent pairing (with both have the same ranking).

If the x value is greater for a pairing, but the y value is smaller, then it's a discordant pair.

τ
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Kendall's  (tau) [2]
Concurrent ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell (a) can be combined with all settlements in e,f,h,i so that both soil quality and
settlement size are greater in a than in e,f,h,i.

Pairings: a * (e+f+h+i)= 15 * (11+7+4+8)=450

τ
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Kendall's  (tau) [3]
Concurrent ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell b can be combined with all settlements in f,i, so that both soil quality and
settlement size in a are greater than in f,i.

Pairings: b*(f+i)= 6*(7+8)=90

τ
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Kendall's  (tau) [4]
Concurrent ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell d can be combined with all settlements in h,i, so that both soil quality and
settlement size in a are greater than in h,i.

Pairings: d*(h+i)= 7*(4+8)=84

τ
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Kendall's  (tau) [5]
Concurrent ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell e can be combined with all settlements in i, so that both soil quality and
settlement size in a are greater than in i.

pairings: e*i= 11*8=88

τ
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Kendall's  (tau) [6]
Concurrent ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

The number of pairings with concurrent ranks is therefore the sum of the individual possible pairings.

Pairs: C=450+90+84+88=712

τ
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Kendall's  (tau) [7]
Discordant Ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell g can be combined with all settlements in b,c,e,f, so that soil quality is worse,
but settlement size is larger than in b,c,e,f.

Pairings: g*(b+c+e+f)=2*(6+11+7+7)=62

τ
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Kendall's  (tau) [7]
Discordant Ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell h can be combined with all settlements in c,f, so that soil quality is worse, but
settlement size larger than in c,f.

pairings: h*(c+f)=4*(7+7)=56

τ
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Kendall's  (tau) [8]
Discordant Ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell d can be combined with all settlements in b,c, so that soil quality is worse, but
settlement size larger than in b,c.

pairings: d*(b+c)=7*(6+7)=91

τ
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Kendall's  (tau) [9]
Discordant Ranks

poor medium good Sum

small 15 (a) 7 (d) 2 (g) 24

medium 6 (b) 11 (e) 4 (h) 21

big 7 (c) 7 (f) 8 (i) 22

Sum 28 25 14 67

All settlements in cell e can be combined with all settlements in c, so that soil quality is poorer, but
settlement size is larger than in c.

pairings: e*c=11*7=77

τ
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Kendall's  (tau) [10]
Discordant Ranks

poor medium good Sum

small 15 7 2 24

medium 6 11 4 21

big 7 7 8 22

Sum 28 25 14 67

The number of pairings with discordant ranks is therefore the sum of the individual possible pairings.

Pairs: D=62+56+91+77=286

τ

32 / 34



Calculating : in R:

## 
##     Kendall's rank correlation tau
## 
## data:  soil$size and soil$soil_quality
## z = 2.6372, p-value = 0.008359
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##       tau 
## 0.2902363

Attention: there is no calculation for Kendall's
tau c, only for Kendall's tau b in R. Therefore,
the data must be raw, not a contingency table.

Kendall's  (tau) [11]

soil <- read.csv2("soilsites.csv", row.names = 1)
cor.test(soil$size, soil$soil_quality, method = "kendall")

τ

τ

τc =  with m = min(nrow, ncol)C−D

∗n2∗1
2

m−1
m

n = 67; C = 712; D = 286; m = 3

τc = 712−286
∗672∗1

2
3−1

3

τc = 426
1496.3

τc = 0.285
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https://commons.wikimedia.org/wiki/File:Storch_bringt_Baby.JPG

To consider:
Correlation is not automatically a causal relationship!

Example: The well-known rattling stork example

The decrease of storks correlates with the decrease of births in Switzerland... causal connection?

Often it is hidden complex third variables that influence two correlating variables, e.g. the changes in
modern society, which influence both the decline of storks and births.

More funny correlations at http://www.tylervigen.com/spurious-correlations.
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