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Cluster Analysis: Idea and Basics

Similar things have similar characteristics...

Group formation on the basis of characteristic attributes that (clearly?) distinguish them from other
groups

Intuitive basis of archaeological work

With late 60s (New archaeology) request,

to uncouple criteria for forming groups from subjective decisions
enable processing of large, intuitively unmanageable amounts of data

→ multivariate analyses

Cluster analysis

1. measurement of a distance (of any kind) between data
2. grouping data that is similar to each other and differentiating from data that are dissimilar

→ Classification

2 / 35



3 / 35



4 / 35



agglomerative

Starting from the smallest unit (individual
objects)

Combine the two most similar to one object
(1st cluster)

Combine the two most similar
[Cluster|Objects]. ...

divisive

Start with the largest possible unit (all objects
as 1 cluster)

Divide them into two groups as dissimilar as
possible

Divide one of the groups into two groups that
are as dissimilar as possible. ...

Cluster Analysis: Methods [1]
March separately, strike together... right? Hierarchical

Which objects are most similar?

Which objects are 2. most similar?

Which objects are 3. most similar? ...

Example: Hierarchical clustering, e.g. according to the Ward method
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Start with
finest partition

Calculate initial
distance matrix

Search for the two
Objects/Clusters with the

least distance

Combine the most similar
Objects/Clusters
into one Cluster

Calculate new
distance matrix

Are all objects
joint in one group?

no

Finished

yes
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Cluster Analysis: Methods [2]
Divide and rule... or?

Partitioning

What is the best way to divide the data into n groups?

Possible procedure:

1. select n cluster centers randomly.
2. combine data most similar to these cluster centers
3. recalculate the cluster centers if necessary
4. Does anything change?

If yes, again to 2.

Otherwise: ready!

Example: kmeans clustering
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Cluster Analysis: Methods [3]

Hierarchical

Advantage: No number of clusters is specified, hierarchies of clusters can be observed
(representation in a dendrogram)

Disadvantage: Once a solution has been found, it cannot be resolved again, even if the cluster is no
longer optimal in a later step.

Partitioning

Advantage: Clusters are still variable afterwards, i.e. if a better solution is found after a cluster cycle,
this solution can be chosen.

Disadvantage: A cluster number is specified.
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Distance calculations: Euclidean distance (metric
variables)

How the crow flies

The closer two points are to each other, whose position in a coordinate system is determined by the
values of the respective variables, the more similar the data sets are.

Calculation of the distance to each other:

Theorem of Pythagoras...

The distance between two data with the variables x,y is thus:

a2 = b2 + c2

dij = √(xi − xj)2 + (yi − yj)2
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Distance calculations: City-Block Distance (or
Manhattan metric) (metric variables)

How the taxi driver drives

Representation of the absolute distance between two objects

Problem: If the two variables are somehow interdependent, the resulting coordinate system is not
rectangular.

Therefore, distances would be over- or underestimated with Euclidean metrics.

Solution: City block distance

The distance between two data with the variables x,y is thus:

dij = |xi − xj| + |yi − yj|
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Distance calculation: non-metric variables
(presence/absence matrices) [1]

When distances can no longer be calculated

With nominal or ordinal variables there are no more defined distances between the values (hopefully
still known...)

Therefore they can no longer be calculated in Euclidean space.

Possible solutions: Calculation over similarity coefficients from contingency tables.

Example burial inventories

Burial 1 Burial 2

+ -

+ a b

- c d
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It is checked in how many cases the graves
match (a,d) and in how many cases there are
differences (b,c).

Burial 1 Burial 2

+ -

+ a b

- c d

Types 1 2 3 4 5 6 7 8 9

Burial 1 1 1 0 1 0 0 1 1 1

Burial 2 1 0 0 0 0 0 1 0 1

Burial 1 Burial 2

+ -

+ 3 3

- 0 3

Distance calculation: non-metric variables
(presence/absence matrices) [2]

Calculation of similarities over equal/different characteristics
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Various possibilities to calculate the distances:

Tanimoto (Jaccard) 

Simple Matching 

Russel & Rao (RR) 

This example in Jaccard 

Burial 1 Burial 2

+ -

+ 3 (a) 3 (b)

- 0 (c) 3 (d)

Distance calculation: non-metric variables
(presence/absence matrices) [3]

Calculation of similarities over equal/different characteristics

d = a
a+b+c

d = a+d
a+b+c+d

d = a
a+b+c+d

d = = 0.53
3+3+0
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Distance calculation: non-metric variables
(presence/absence matrices) [3]

in R:

leather.csv

leather <- read.csv("leather.csv")
dist(leather[,c("length","width","thickness")],method="euclid")
dist(leather[,c("length","width","thickness")],method="manhattan")

burial_pa.csv

burials <- read.csv("burial_pa.csv", row.names = 1)
burials[1:2,]

##         V1 V2 V3 V4 V5 V6 V7 V8 V9
## burial1  1  1  0  1  0  0  1  1  1
## burial2  1  0  0  0  0  0  1  0  1

library(vegan)
vegdist(burials,method="jaccard")

##           burial1   burial2   burial3   burial4   burial5   burial6
## burial2 0.5000000                                                  
## burial3 0.7142857 1.0000000                                        
## burial4 0.4285714 0.6666667 0.6666667                              
## burial5 0.6250000 0.8571429 0.6666667 0.5714286                    
## burial6 0.5714286 0.6000000 1.0000000 0.7142857 0.5000000          
## burial7 0.6666667 0.8750000 0.5000000 0.6250000 0.6250000 0.7500000
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Distance calculations: exercise
The inventories of different (hypothetical) settlements are given.

Calculate the appropriate distance matrix.

inv_settlement.csv
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Example Backhaus et al: Magarine

Euclidean Distance Matrix, calculated from div.
Factors

The most similar:

Flora and Rama.

These form our first cluster at a distance of 4

For the further steps there are different
procedures to determine the value for the new
cluster...

clustering: {4}

Rama Homa Flora SB

Homa 6

Flora 4 6

SB 56 26 44

Weihnachtsbutter 75 41 59 11

Hierarchical clustering [1]

When we have the distances...
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Rama Homa Flora SB

Homa 6

Flora 4 6

SB 56 26 44

Weihnachtsbutter 75 41 59 11

Rama, Flora Homa SB

Homa 6

SB 44 26

Weihnachtsbutter 59 41 11

clustering: {4}

Hierarchical clustering [2]
Positions of clusters, methods

Single linkage process

Nearest neighbour: The distance from the group {Rama,Flora} is determined by the smallest
distance from this group to all other values.
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Rama, Flora Homa SB

Homa 6

SB 44 26

Weihnachtsbutter 59 41 11

Rama, Flora, Homa SB

SB 26

Weihnachtsbutter 41 11

clustering: {4, 6}

Hierarchical clustering [3]
Positions of clusters, methods

Single linkage process

Nearest neighbour: The distance from the group {Rama,Flora, Homa} is determined by the smallest
distance from this group to all other values.
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Rama, Flora, Homa SB

SB 26

Weihnachtsbutter 41 11

Rama, Flora, Homa

SB, Weihnachtsbutter 26

clustering: {4, 6, 11} -> clustering: {4, 6, 11, 26}

Hierarchical clustering [4]
Positions of clusters, methods

Single linkage process

Nearest neighbour: The distance from the group {Rama,Flora, Homa} is determined by the smallest
distance from this group to all other values.
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Hierarchical clustering [5]

Dendrogram

Representation of the process of the cluster combination

clustering: {4, 6, 11, 26}
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Hierarchical clustering: Methods

Other methods

Complete linkage process:

The most distant neighbor is selected.

Average Linkage Procedure

The mean value of the paired distances of all data is selected.

Ward method

Those groups are united in which the combination least increases the variance within the group.
Good (best?) procedure for determining clusters when distance measures (metric variables) are
available.
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Single linkage
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Average linkage
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Ward
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The value is added to a cluster that causes the
least increase in variance within the cluster.

Advantage: usually finds "natural" groupings
best.

Disadvantage: is only applicable for metrically
scaled variables [but: Jaccard distance can be
processed].

Poor in finding groups with small number of
elements or stretched groups In R:

leather <- read.csv("leather.csv")

leather.dist <- dist(leather[,c("length",
                                "width",
                                "thickness")],
                     method="euclid")

leather.hclust<-hclust(leather.dist,method="ward")

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

In R:

plot(leather.hclust)

Hierarchical clustering: Ward Method

Procedure when metric data is available
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The new distance dimension is calculated from
the average of all pairwise Comparisons of the
distances of the members of two clusters
calculated

Advantage: can also be used with nominally
scaled variables, takes into account all
elements of a cluster when redetermining the
distances

Disadvantage: Not as well suited as Ward to
create "natural" groups.

In R:

burials <- read.csv("burial_pa.csv", row.names = 1)

burials.dist <- vegdist(burials,
                     method="jacc")

burials.hclust<-hclust(burials.dist,method="average")

plot(burials.hclust)

Hierarchical clustering: average linkage method

A procedure when only nominal data are available
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How many groups are enough?

content related considerations

How many groups do I expect? Do they make
sense? Can I read it from the dendrogram?

Elbow criterion

For ward clustering: If the variance within the
clusters no longer increases significantly, good
clustering is found.

In R:

Display for the last 10 clusters:

plot(rev(leather.hclust$height)[1:10],type="l")

"Elbow" at 5: 5 cluster solution seems to make
sense

Hierarchical Clustering: Number of Clusters
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Dendrogram

plot(leather.hclust)

Using the cluster results for coloring plots:

leather$clusters <- cutree(leather.hclust,5)
plot(leather[,c("length", "width", "thickness")],
     col=rainbow(5)[leather$clusters])

Hierarchical Clustering: Visualisation
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Hierarchical Clustering: Excercise
Ceramics with various decorative elements

Given are ceramic artefacts with different properties.

Determine which distance measure is appropriate, calculate the distance matrix and carry out a
cluster analysis using a suitable method.

Determine a good cluster solution and display the dendrogram.

ceramics.csv
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Non-hierarchical clustering [1]

If a cluster number can be assumed...

In each step, the clusters are reassembled and new distances are calculated. If the solution is as
optimal as possible, the procedure stops.

Example kmeans:

Possible procedure: identify the optimal cluster number with hierarchical method (Ward), then actual
clustering with kmeans

andean_sites.csv
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andean <- read.csv2("andean_sites.csv", row.names = 1)
andean.hclust<-hclust(dist(andean),method="ward")

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

plot(rev(andean.hclust$height),type="l")

Ellbow at 3, so 3 clusters:

andean.kmeans<-kmeans(andean,3)
plot(andean,col=andean.kmeans$cluster)

Non-hierarchical clustering [2]

If a cluster number can be assumed...
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